معادلة xʸ=yˣ

عموما، المعادلات الأسية عمليات غير تبادلية. ولكن تعتبر معادلة xʸ=yˣ حالة خاصة، عندما تكون .[1]

التاريخ

تم ذكر معادلة لأول مرة في رسالة دانييل برنولي إلى كريستيان غولدباخ يوم 29 يونيو 1728[2].ذكر فيها أن إلا في حالة و ، على الرغم من أن هناك العديد من الحلول غير المتناهية[3][4] .
جاء الرد من كريستيان غولدباخ في 31 يناير 1729، ذكر فيها الصيغة العامة لحل هذه المعادلة:[5]

وهي صيغة مشابهه لما ذكره ليونهارت أويلر.

أشار فان هينجيل (J. van Hengel) أنه إذا كان أعداد صحيحة موجبة. بحيث تكون أو . يكون

وهذا كافي لاعتبار و في محاولة لإيجاد حل المعادلة.[6]

تم ذكر المشكلة في العديد من الأوراق البحثية والمنشورات. ففي عام 1960 تم ذكر المعادلة في منافسة ويل وليام بوتنام الرياضية.[7][8]

حلول حقيقة موجبة

يوجد العديد من الحلول إذا كانت المعادلة بالشكل التالي:

ولكن لحل معادلة ، يجب اعتبار أن . وأن .

وبذلك يكون

.

بأخذ أسا لكا الطرفين، ثم القسمة على

.

يكون حل المعادلة على الشكل التالي :

,
.

بأخذ أو ، يكون الحل الصحيح الموجب للمعادلة هو:

.

انظر أيضا

المصادر

    • بوابة رياضيات
    • بوابة نظرية الأعداد
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.