كثير حدود هورفيتز

في الرياضيات ، يعتبر كثير حدود هورفيتز ، على اسم العالم أدولف هورفيتز ، هو كثير الحدود الذي تقع جذوره ( الأصفار ) في النصف الأيسر من المستوى المركب أو على المحور التخيلي، أي أن الجزء الحقيقي من كل جذر هو صفر أو سلبي. [1] يجب أن يكون لمعظم الحدود هذا معامِلات ذات أعداد حقيقية موجبة. يقتصر المصطلح أحيانًا على كثيرات الحدود التي تحتوي جذورها على أجزاء حقيقية سلبية تمامًا، باستثناء المحور (أي متعدد الحدود الثابت لـ Hurwitz). [2]

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المُخصصة لذلك. (مارس 2020)

كثيرات الحدود Hurwitz مهمة في نظرية أنظمة التحكم ، لأنها تمثل المعادلات المميزة للأنظمة الخطية المستقرة . يمكن تحديد ما إذا كان كثير الحدود هو Hurwitz عن طريق حل المعادلة لإيجاد الجذور، أو من المعاملات دون حل المعادلة بمعيار استقرار Routh-Hurwitz .

أمثلة

مثال بسيط على كثيرات حدود Hurwitz هو ما يلي:

الحل الحقيقي الوحيد لهذه المعادلة هو (1-) ، وبما أنه سالب وبالتالي فهو كثير حدود هورفيتز

المراجع

  1. Kuo, Franklin F. (1966). Network Analysis and Synthesis, 2nd Ed. John Wiley & Sons. صفحات 295–296. ISBN 0471511188. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. Weisstein, Eric W (1999). "Hurwitz polynomial". Wolfram Mathworld. Wolfram Research. مؤرشف من الأصل في 20 أكتوبر 2018. اطلع عليه بتاريخ July 3, 2013. الوسيط |CitationClass= تم تجاهله (مساعدة)
    • بوابة رياضيات
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.