زمرة تبديلات

في الرياضيات، زمرة تبديلات (بالإنجليزية: Permutation group)‏ هي زمرة G عناصرها تبديلات لمجموعة ما M والعملية المعرِفة للزمرة هي تركيب هؤلاء التبديلات في G .[1][2][3] هؤلاء التبديلات هن تقابلات من المجموعة M إلى المجموعة M نفسها، لا أقل ولا أكثر.

الأشكال التي يأخذها مكعب روبيك تكون زمرة.

تركيب تبديلتين

الجداء QP هو:

أمثلة

لتكن المجموعة التالية G1 لتبديلات المجموعة M = {1,2,3,4}:

  • e = (1)(2)(3)(4) = (1)، هذه هي التبديلة المطابقة. إنها تربط كل عنصر بنفسه.
  • a = (1 2)(3)(4) = (1 2)، هذه التبديلة تربط الواحد باثنين والاثنين بواحد وتترك الثلاثة والأربعة ثابتتين.
  • b = (1)(2)(3 4) = (3 4)، هذه التبديلة تشبه التبديلة السابقة. إنها تترك الواحد والاثنين ثابتين وتربط الثلاثة بأربعة، والأربعة بثلاثة.
  • ab = (1 2)(3 4)، هذه التبديلة هي تركيب للتبديلتين السابقتين. إنها تربط الواحد باثنين والاثنين بواحد والثلاثة بأربعة والأربعة بثلاثة.

مبرهنة كايلي

التاريخ

أمثلة

انظر إلى شكل دائري (تبديلات)

مراجع

  1. "معلومات عن زمرة تبديلات على موقع psh.techlib.cz". psh.techlib.cz. مؤرشف من الأصل في 31 ديسمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. "معلومات عن زمرة تبديلات على موقع zthiztegia.elhuyar.eus". zthiztegia.elhuyar.eus. مؤرشف من الأصل في 31 ديسمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  3. "معلومات عن زمرة تبديلات على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2 أبريل 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)

    وصلات خارجية

    • بوابة جبر
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.