مبرهنة سافيتش

في نظرية التعقيد الحسابي مبرهنة سافيتش هي نتيجة اساسية مهمة تحدد العلاقة بين تعقيد المساحة القطعي وغير القطعي .[1] ونص المبرهنة هو :

في حين أنَّ ((NSPACE(s(n هو قسم كل اللغات التي يمكن تقريرها بواسطة آلة تيورنج غير قطعية التي تستغل (s(n مساحة اضافية على الأكثر , ((SPACE(s(n هو قسم كل اللغات التي يمكن تقريرها بواسطة آلة تيورنج قطعية التي تستغل (s(n مساحة اضافية على الأكثر .

البرهان

فلتكن لغة التي يمكن تقريرها بواسطة آلة تيورنج غير قطعية , M , التي تستغل (s(n مساحة اضافية . لكل مخطط الصُوَر , G=GM,x , يوجد فيه على الأكثر رؤوس . لاحظ انَّ فقط إذا يوجد من الصورة الاولية، نرمز لها s , مسار موجه إلى الصورة النهائية، نرمز لها t , هذه المسألة تُعرف أيضا بمسألة الوصول وهي مسألة تقرير : معطى مخطط G , وكذلك رأسين s و-t ,قرر إذا ما يوجد مسار موجه بين s و- t . يمكن حل هذه المسألة بسهولة بواسطة DFS أو BFS ولكن المساحة الاضافية المستخدمة خطية (اي ) وهذا لا يفيد للمبرهنة .

نعرف (Reach(u,v,i على انه "نعم" إذا يوجد مسار بين u و- v طوله على الأكثر 2i و"لا" خلاف هذا . لاحظ انه :

  1. ((Reach(s,t,log(n = "نعم" فقط إذا يوجد مسار بين s و- t . (اي انه يمكننا حل مسألة الوصول)
  2. (Reach(u,v,i="نعم" يوجد رأس z بحيث يمكن الوصول من u إلى z وطول المسار بينهما على الأكثر , ويمكن الوصول من z إلى v حيث ان طول المسار بينهما على الأكثر .

بواسطة هذه الملاحظات امكن ان نحصل على خوارزمية عودية والتي مساحتها الاضافية التي تستخدمها على الأكثر هي .

الخوارزمية

من الملاحظات السابقة يظهر انه ليتحقق (Reach(u,v,i="نعم" يكفي ان نجد z الذي يحقق (1-Reach(u,z,i="نعم" و (1-Reach(z,v,i="نعم" , لذا كل ما علينا فعله هو ايجاد z يحقق المطلوب، لذا فاننا سوف نبحث عنه عودياً (recursively) :

def k_edge_path(s, t, k):
    if k == 0:
        return s == t
    else if k == 1:
        return s == t or (s, t) in edges
    else:
        for u in vertices:
            if k_edge_path(s, u, floor(k / 2)) and k_edge_path(u, t, ceil(k / 2)):
                return true
    return false

نلحظ انه يمكن استخدام المساحة التي قد استخدمت سابقا، لذا فان المساحة الاضافية يمكن التعبير عنها بالشكل التالي :

لذا من الملاحظة الاولى : لنحل مسألة الوصول ((i=O(log(m اي : وحل هذه العلاقة العودية هو وهذا هو المطلوب .

استنتاجات

  • PSPACE=NPSPACE , وهذا لان تربيع كثير الحدود هو أيضا كثير حدود .
  • NL⊆L2 حيث أنَّ ((L2=SPACE(log2(n , وهذا ينبع من المبرهنة مباشرة، وكذلك لان مسألة الوصول هي مسألة كاملة في الصنف NL .

انظر أيضا

مصادر

  1. "معلومات عن مبرهنة سافيتش على موقع academic.microsoft.com". academic.microsoft.com. مؤرشف من الأصل في 27 أكتوبر 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    • Arora, Sanjeev; Barak, Boaz (2009), Computational complexity. A modern approach, Cambridge University Press, ISBN 978-0-521-42426-4, Zbl = complete&q = an:1193.68112 1193.68112 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)
    • Papadimitriou, Christos (1993), "Section 7.3: The Reachability Method", Computational Complexity (الطبعة 1st), Addison Wesley, صفحات 149–150, ISBN 0-201-53082-1 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)
    • Savitch, Walter J. (1970), "Relationships between nondeterministic and deterministic tape complexities", Journal of Computer and System Sciences, 4 (2): 177–192, doi:10.1016/S0022-0000(70)80006-X الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)
    • Sipser, Michael (1997), "Section 8.1: Savitch's Theorem", Introduction to the Theory of Computation, PWS Publishing, صفحات 279–281, ISBN 0-534-94728-X الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)


    • بوابة علم الحاسوب
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.