غابة عشوائية

الغابة العشوائية أو الغابات العشوائية (بالإنجليزية: Random forest)‏ عبارة عن خوارزمية للتعلم الآلي تم تطويرها بناءً على مجموعة من أشجار القرار.[1][2] تستخدم هذه الخوارزمية للتصنيف، الانحدار ومهام أخرى. عادةً ما تتمتع خوارزمية الغابة العشوائية بدقة أفضل مقارنة بشجرة القرار.[2][3]

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المُخصصة لذلك. (سبتمبر 2020)
تتكون خوارزمية الغابة العشوائية من عدة أشجار قرار

تاريخ

أول شخص ابتكر خوارزمية الغابة العشوائية كان تيم هو في 1995. تم تحسين هذه الخوارزمية بواسطة ليو بريمان.[4]

طريقة

لإنشاء غابة عشوائية، يجب تقسيم البيانات إلى مجموعات جزئية عشوائية متعددة. ثم يتم تدريب شجرة لكل مجموعة جزئية. سيكون لكل شجرة تنبؤها الخاصة لكل مثال جديد قادم. سيتم تحديد التنبؤ النهائي للنموذج عن طريق التصويت.[3][5]

أهمية المتغيرات

يمكن لخوارزمية الغابة العشوائية ترتيب المتغيرات بناءً على أهميتها. الصيغة الأساسية لتقييم الأهمية هي نفس صيغة شجرة القرار (على سبيل المثال الانتروبيا أو معامل جيني). الفرق الوحيد هو أنه سيتم حساب متوسط درجات الأهمية للأشجار المختلفة.[1][2]

المراجع

  1. Piryonesi, S. M.; El-Diraby, T. E. (2020) [Published online: December 21, 2019]. "Data Analytics in Asset Management: Cost-Effective Prediction of the Pavement Condition Index". Journal of Infrastructure Systems. 26 (1). doi:10.1061/(ASCE)IS.1943-555X.0000512. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning,” Bayesian Forecast. Dyn. Model., vol. 1, pp. 1–694, 2009. الوسيط |CitationClass= تم تجاهله (مساعدة)
  3. Piryonesi, S. Madeh; El-Diraby, Tamer E. (2020-06). "Role of Data Analytics in Infrastructure Asset Management: Overcoming Data Size and Quality Problems". Journal of Transportation Engineering, Part B: Pavements (باللغة الإنجليزية). 146 (2): 04020022. doi:10.1061/JPEODX.0000175. ISSN 2573-5438. مؤرشف من الأصل في 15 سبتمبر 2020. الوسيط |CitationClass= تم تجاهله (مساعدة); تحقق من التاريخ في: |تاريخ= (مساعدة)
  4. Breiman, Leo (2001). "Random Forests". Machine Learning. 45 (1): 5–32. doi:10.1023/A:1010933404324. مؤرشف من الأصل في 17 سبتمبر 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
  5. Provost, F., & Fawcett, T. (2013). Data Science for Business: What you need to know about data mining and data-analytic thinking. " O'Reilly Media, Inc.". الوسيط |CitationClass= تم تجاهله (مساعدة)
    • بوابة إحصاء
    • بوابة رياضيات
    • بوابة علم الحاسوب
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.